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Abstract—Expressive text-to-speech (E-TTS) synthesis is impor-
tant for enhancing user experience in communication with ma-
chines using the speech modality. However, one of the challenges
in E-TTS is the lack of a precise description of emotions. Previous
categorical specifications may be insufficient for describing com-
plex emotions. The dimensional specifications face the difficulty of
ambiguity in annotation. This work advocates a new approach of
describing emotive speech acoustics using spoken exemplars. We
investigate methods to extract emotion descriptions from the input
exemplar of emotive speech. The measures are combined to form
two descriptors, based on capsule network (CapNet) and residual
error network (RENet). The first is designed to consider the spatial
information in the input exemplary spectrogram, and the latter is
to capture the contrastive information between emotive acoustic
expressions. Two different approaches are applied for conversion
from the variable-length feature sequence to fixed-size description
vector: (1) dynamic routing groups similar capsules to the output
description; and (2) recurrent neural network’s hidden states store
the temporal information for the description. The two descriptors
are integrated to a state-of-the-art sequence-to-sequence architec-
ture to obtain an end-to-end architecture that is optimized as a
whole towards the same goal of generating correct emotive speech.
Experimental results on a public audiobook dataset demonstrate
that the two exemplar-based approaches achieve significant per-
formance improvement over the baseline system in both emotion
similarity and speech quality.

Index Terms—Expressive speech synthesis, exemplary emotion
descriptor, residual error, speech emotion recognition, capsule.

I. INTRODUCTION

S PEECH-BASED communication is a hallmark of artificial
intelligence. In recent years, we have seen the proliferation

of applications using speech as the interaction medium, such
as virtual assistants (e.g. Apple Siri, Microsoft’s Cortana, Ama-
zon’s Alexa, etc.), voice search (e.g. Google’s and Baidu’s voice
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Fig. 1. Architecture of TTS and E-TTS system. (a) TTS: converting text to
speech in neutral style; (b) E-TTS: converting text to speech with specified
emotion. The E-TTS system needs not only the input text, but also the emotion
specification to guide the synthesis model to generate speech with the target
emotion.

search) and call centers (e.g. Google Duplex). The spoken re-
sponses generated by these systems have diverse content, which
calls for various expressive presentations to convey paralinguis-
tic information such as emotions, intentions and speaking styles.
Expressive spoken presentations of information can significantly
improve user experiences for these applications [1], [2]. For
example, when faced with user requests such as “Tell me a joke”,
“Tell me about romantic dinner venues nearby”, and “Recite
a poem for me”, if the system responds only with a neutral
speaking style, the user experience will be severely limited.
On the other hand, if the synthetic speech response can convey
different speaking styles (e.g. in telling jokes or reciting poems),
different emotions (e.g. happy, satisfied, affectionate, etc.) and
different intentions (e.g. making an inquiry, request, suggestion,
confirmation, complaint etc.), the user experience will be greatly
enhanced.

Previous research efforts in expressive text-to-speech (E-
TTS) synthesis aimed at generating natural and expressive
speech with specified styles, which relate to emotions [3]–
[7], intentions [8]–[11], emphasis (e.g. emphatic versus neu-
tral) [12]–[14] and conversational characteristics [15]–[17]. The
study of emotive synthesis attracts much attention due to its
diverse applicability and the availability of corpora. Compared
to neutral TTS (Fig. 1(a)) where text is the only input, E-TTS
(Fig. 1(b)) requires an emotion specification as additional input,
e.g. using categorical codes [18] or dimensional values [19], for
synthesizing an emotive spoken response. However, specifying
emotions is a challenge because both categorical descriptors
and quantized dimensional descriptors are difficult to code.
Furthermore, a specified emotion may be conveyed via a great
variety of acoustic realizations. These challenges motivate our
work in investigating approaches for emotion specification for
speech synthesis. We advocate an exemplar-based approach to
synthesizing emotive speech, as shown in Fig. 2. This approach
describes emotion(s) via an utterance exemplar, instead of cat-
egorical codes or dimensional values. Emotive information is
extracted from the utterance exemplar to be used in speech
synthesis. In other words, the synthetic speech is designed
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Fig. 2. Architecture of an exemplar-based emotive speech synthesis system.
Speech is synthesized to mimic the emotion(s) in the exemplar. The emotive
information is extracted from the exemplar and represented by descriptors and
used as input for synthesis.

to mimic the emotions in the exemplar and there is no need
for coding emotive information (subjectively) using categorical
or dimensional descriptors. To realize exemplar-based emotive
speech synthesis, we need to address several research questions:
(i) What feature representation should be used for the utterance
exemplar? (ii) What kind of emotion descriptors should be used?
(iii) How can we map the feature description to the emotion
descriptors? (iv) How can we synthesize emotive speech based
on input descriptor values?

We will address these research questions in the following sec-
tions, after a review of previous work in Section II. In Section III,
we will present an approach where spectrograms are used to
encode spatial and contrastive information related to emotions
in the utterance exemplar. We will use categorical codes and
neural latent representations as descriptors of emotions. We also
present two approaches to extract emotive information, based on
capsule networks (CapNets) [20] and residual error networks
(RENets) [21]. Experiments are presented and discussed in
Section IV. Conclusions are drawn in Section V.

II. RELATED WORK

Previous work have described emotions explicitly using cat-
egorical codes or dimensional values. The categorical emo-
tions are defined as a closed set of discrete basic emotions,
e.g. Anger, Disgust, Fear, Joy, Sadness and Surprise [3], [22].
However, it may not be straightforward to encode complex
emotions (e.g. a mix of emotions at different intensity levels)
using categorical descriptors. Alternatively, the dimensional
approach defines emotions as points within a dimensional space,
e.g. the dimensions of pleasure-displeasure, arousal-nonarousal
and dominance-submissiveness (PAD) [23]. Charfuelan and
Steiner [24] used PAD to describe the expressive styles in
audiobook data. Hodari et al. [19] used the dimensions of
valence, activation and dominance (VAD) to describe emotions.
Theoretically, any arbitrary emotion can be described by dimen-
sional values. However, annotating data with these dimensions
is difficult. Due to lack of standardized coding schemes and
lack of effective methods to minimize subjective variability
in human annotations, there can be significant inconsistencies
in coding [25]. To address this problem in data annotation,
researchers have explored semi-supervised and unsupervised
methods to automatically learn emotion specifications from
unlabeled data [24], [26]–[33]. For example, the K-means clus-
tering algorithm has been applied to group speech samples into
a predefined number of emotion classes [26], [30], [31]. The
resulting emotion classes, however, are still a set of discrete

categories and further work is needed before the categories can
be used to describe complex emotions.

Given a specific emotion, there are many strategies in acoustic
realizations in speech. The strategies may vary among speak-
ers [34]–[36]. For example, among the two speakers investigated
in [34], one used a different rhythm, i.e. the timing of syllables
and number of silent segments, to express the emotions of Angry,
Surprise and Disgust. Contrastively, the other speaker used other
acoustic realizations, i.e. high energy for Angry, high pitch for
Surprise and low pitch for Disgust, but kept the same rhythmic
pattern across emotions. Still other strategies may be used in
different interaction contexts, e.g. smaller F0 ranges in inter-
views; versus larger ranges in sports commentaries [37]. Hence,
descriptors of emotions need precise encoding of emotions and
their realization strategies. Previous efforts have been devoted
to defining acoustic parameter rules to describe various acoustic
realizations [34], [38]. For example, compared to the neutral
emotion, the F0 mean of Joy needs to be increased by 50%,
and the tempo is expected to be 30% faster [6]. The derived
acoustic parameters can be used as emotion descriptors for the
synthesis model. Meng et al. [39] perturbed the acoustic features
of neutral speech to convey focus in the output expressive speech.
Perturbations were applied to the F0 maximum, F0 minimum,
F0 mean, F0 range, F0 slope, mean of RMS energy, and duration
of each phone. For example, the maximum F0 of voiced phones
is increased to generate emphatic speech. However, it is difficult,
if not impossible, to specify all strategies for all emotions with
manual derived parameters. Therefore, automatic methods based
on neural networks were introduced, including unconditional
control vectors [40], [41], bottleneck features [10], residual
features [10], style token [42], [43], latent variables [44]–[46]
and variational embedding [47]–[49].

Recently, deep learning has demonstrated impressive effec-
tiveness in E-TTS [18], [40], [41]. Neural expressive synthesis
is as flexible as HMM-based expressive synthesis, while at
the same time superior in modeling the correlation among the
input contextual features. This is because the training data with
different contextual features are not fragmented through cluster-
ing [50]. Neural E-TTS models can be classified into two types:
(i) the two-step architecture [40], [41], [51] and (ii) the sequence-
to-sequence (seq2seq) architecture [18], [32], [52]–[56]. The
two-step architecture involves mapping the linguistic features
augmented with an emotion specification to acoustic features in
two separately optimized steps — namely, duration prediction
and frame-level acoustic feature generation. Contrastively, the
seq2seq architecture jointly optimizes both duration prediction
and acoustic feature generation in one model with an attention
mechanism. The attention weights are calculated based on the in-
put sequence and the previously generated output sequence. The
attention weights, which measure how much attention should be
devoted to each step in the input sequence, can be considered
as implicit duration modeling, or alignments between the input
linguistic sequence and the output acoustic sequence. In this
work, we adopt the seq2seq architecture, where the emotion
specification, e.g. categorical codes, are passed to the seq2seq
model to control the synthesis of emotive speech. Moreover,
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Fig. 3. Spectrogram examples with blue lines explicitly showing pitch con-
tours corresponding to voiced parts. Utterance (a) is a neutral statement utterance
without salient pitch rise. Utterance (b) shows pitch rise at the beginning to
emphasize the word “you”. Utterance (c) is a question that shows pitch rise at
the end.

exemplary descriptors that are extracted from spoken utterances
will be integrated into the seq2seq architecture to control the
synthesis.

III. APPROACH

This section presents the approach for emotive speech syn-
thesis that attempts to mimic the emotion(s) specified through
an input utterance exemplar. The approach involves four stages,
each addressing a research question presented in the introductory
section.

A. Feature Representation of the Utterance Exemplar

We consider the spectrogram to be a desirable representation
of the utterance exemplar that can preserve the time-frequency
analysis in its entirety. The analysis is important for represent-
ing emotive information. For example, consider the statement,
exclamation or question in the utterances shown respectively in
Fig. 3(a) to 3(c). Fig. 3(a) is a neutral statement with a flat pitch
contour. Fig. 3(b) is an exclamation with salient intonation rise
in the word “you” at the beginning of the utterance. Fig. 3(c)
is a question with salient pitch rise at the end of the utterance.
Such spatial information can be captured well by the spectro-
gram. The utilization of prosodic features of pitch, energy and
duration has also been investigated in previous work to improve
the controllability of synthesis models [57]–[59]. However, the
timbre information in spectrogram also plays an important role

Fig. 4. Two utterances uttered by a single speaker with the text content of “The
kids are talking by the door!”. Both utterances are annotated with the emotion
of Anger. However, we can observe different acoustic realizations – the pitch
and intensity contour of utterance (a) has lower mean; while the contours of
utterance (b) has larger mean and variance.

in emotions, e.g. harshness in the voice, harmonic saturation and
formant distribution, etc.

B. Emotive Descriptors of the Utterance Exemplar

Next, we seek to find efficient descriptors for encoding emo-
tive information from the utterance exemplars. One possible
option is to use categorical codes, e.g. Anger, Happiness and
Sadness, etc. However, there are several limitations in categor-
ical codes. First, the definitions for the codes are vague due to
the lack of standardized coding schemes. This brings challenges
to synthesizing the corresponding emotive speech accurately.
Second, it is not straightforward to encode complex emotions,
e.g. mix of emotions at different intensity levels. Third, the
acoustic realizations, corresponding to one categorical code, can
be highly different, and the codes are insufficient for specifying
the acoustic variation information that is necessary for the syn-
thesis model. As an illustration, Fig. 4 shows two utterances
that are uttered by a single speaker with same text content
from RAVDESS corpus [60]. The emotion of the two utterances
are both annotated as Anger, but the acoustic realizations of
the two utterances are highly different. Both the pitch contour
and intensity contour of utterance (a) have lower mean and
variance values than those of utterance (b). This demonstrates
that the highly varied acoustic realizations cannot be represented
by categorical codes. To precisely synthesize these acoustic
variations, a more accurate descriptor is desired. In this work, we
also use the neural latent representation that is learnt from such
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realization variations automatically. The latent representation
is optimzied towards the final goal of synthesizing the highly
varied acoustic realizations accurately.

1) SER-Based Categorical Descriptors: As mentioned
above, categorical codes are widely used to specify emotions. It
will be desirable to derive categorical codes from the utterance
exemplar using speech emotion recognition (SER) techniques,
which can predict the probabilities of different pre-defined emo-
tion categories based on the input utterance. We will use capsule
networks (CapNet) for SER, which offer special advantages in
capturing the spatial information in spectrograms for speech
emotion recognition (Sec. III-C1). The CapNet outputs a set of
probabilities corresponding to the categorical emotions, which is
converted into a one-hot emotion code vector (EC) by identifying
the emotion with maximum probability. An alternative descrip-
tor for the exemplar is to directly use the probability values
output by the SER model for the various emotions, which we
will denote as EP. Another option is to use the raw logit values
(before softmax layers) generated by the SER model. We will
denote the logit-based descriptor as EL.

2) Neural Descriptor: While SER trained well on data la-
beled with categorical codes should provide reasonable per-
formance, the use of single emotion categories may not be
sufficient for describing utterances carrying complex emotions
(e.g. a mix of emotions at varying degrees). One may consider
the use of a dimensional descriptor as an alternative, but the
dimensional values are difficult to annotate with consistency.
Hence, we propose the use of a latent representation which
is automatically derived from the utterance exemplar using
neural methods. Residual error networks (RENets) are adopted
because they present the advantages of explicitly capturing the
contrastive information across emotions in spectrograms and
automatically optimizing a latent representation (Sec. III-C2).
This automatically derived latent emotive representation will be
denoted as EA. The methods for generating EC, EP, EL and EA
will be elaborated in the next subsection.

C. Mapping Signal Representation to Emotive Descriptors

This section elaborates on CapNet, i.e. capsule networks for
speech emotion recognition [20], [61], [62] and how they are
superior to the commonly used convolutional neural networks
(CNNs) for capturing spatial information related to emotions in
the utterance exemplars. We will also elaborate on RENet [21],
i.e. residual error networks for deriving an emotive latent repre-
sentation from the utterance exemplar by explicitly capturing the
constrastive information across emotions from spectrograms.

1) CapNet: While CNNs have been a popular network struc-
ture for extracting information from spectrograms, we consider
that they have two limitations in capturing spatial and contrastive
information for speech emotion recognition (SER). First, the
neurons in the convolutional layers output a scalar, which only
provides the probability that the feature pattern (e.g. intonation
rise) matches the kernel. However, the more detailed instantia-
tion parameters (e.g. position) are ignored. As shown in Fig. 5,
the shared kernel is applied to various parts of the spectro-
gram. When the feature pattern (e.g. intonation rise) matches

Fig. 5. CNN perception of intonation rise (highlighted with red rectangles)
at different positions. The shared kernel is applied to various parts of the
input, as shown by the squares. When the kernel is applied to the intonation
rises, the output will be activated (highlighted as blue). Although the activated
outputs come from different parts of the input spectrogram, the max-pooling
operation produces the same result, which hinders the accurate classification of
the emotional (left) and neutral (right) utterances.

Fig. 6. Capsule perception of intonation rise (highlighted with red rectangles)
at different positions. The intonation rises at different positions produce different
capsule outputs, which are highlighted as green and purple to reflect the position
difference. The dynamic routing then passes the capsule outputs containing the
position information to the upper layer. Hence, the final distinctive outputs
containing the position information of intonation rise support the accurate
emotion classification.

the kernel, the output is activated (and highlighted in blue in
the figure), regardless of the positional information of feature
(e.g. at the beginning versus the end). Second, the max-pooling
layer discards all but the most activated neuron, and the spatial
relationship across neurons are lost when the activated neurons
are passed to the upper layers. As illustrated in Fig. 5, activated
outputs in different positions are selected by max-pooling. The
final CNN outputs of the exclamation and the question (see left
and right parts of Fig. 5) are the same and thus the emotive
and neutral characteristics are not distinguished. To address this
issue of spatial information loss, we propose to use CapNets –
the neuron that output a scalar in CNN is replaced with a capsule,
i.e. group of neurons which output a vector containing the instan-
tiation information with the pose and position of the recognized
pattern. Furthermore, the max-pooling layer is replaced with a
dynamic-routing algorithm, which routes all capsules that are
in various positions to upper layers without information loss.
As shown in Fig. 6, intonation rise at different spatial positions
produce different capsule outputs, as highlighted in green and
purple. The position-aware capsule outputs are passed to the
upper layer via dynamic routing. Distinguishing the positional
information in the final output is important for accurate classi-
fication of emotions.
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Fig. 7. Capsule structure. Each capsule is a group of neurons. The connections
between layers are established by dynamic routing algorithm.

To connect between capsule layers, the dynamic routing algo-
rithm (also known as routing-by-agreement), is applied to learn
the hierarchical relationship between features in consecutive
layers. The algorithm works as follows: Assume that the i-th
capsule in layer l is denoted as ui, and the j-th capsule in layer
l + 1 as vj , referring to Fig. 7. The ui is first projected to the
space of vj by

ûj|i = W ijui + bij , (1)

where W ij and bij are weight matrix and bias vector, and they
are both position-aware and trainable. To obtain the capsule vj

in the upper layer, the procedure described by (2)–(5) is iterated
for a predefined number of times n, with the initial value of
dij = 0:

cij =
exp(dij)∑
k exp(dik)

, (2)

sj =
∑
i

cijûj|i, (3)

vj =
||sj ||2

1 + ||sj ||2
sj
||sj || (4)

and

dij ← dij + ûj|i · vj , (5)

where · denotes the dot product. The cij is the coupling coeffi-
cient that measures the agreement between vj in the upper layer
and ûj|i projected from ui. Hence, this algorithm is also called
routing-by-agreement.

We have built a CapNet-based system for speech emotion
recognition (SER) from utterance exemplars. The recognized
emotion is used subsequently in the descriptors EC, EP and
EL [62]. The SER system is illustrated in Fig. 8. The input
frame sequence (i.e. spectrogram) is first sliced into overlapping
windows, and the shared capsule layers are applied to each
window for parameter reduction. In each window, several sep-
arated convolutional layers shared across windows are applied
to the input to obtain primary capsules. The neurons of different
channels at the same position along the width- and height-axes
of output feature map of the convolutional layer are grouped
together to form a capsule. The primary capsules are routed to
generate window-level capsules {vt}Mt=1. The utterance-level

Fig. 8. Architecture of the CapNet-based speech emotion recognition system.

capsules are then obtained with utterance-level routing based on
the output vectors o of these windows, which are defined as:

o = [v�1 , . . .,v
�
M , ||v1||, . . ., ||vM ||]. (6)

The window output vector consists of the orientations and
lengths of all the M capsules in one window, since both are
important for utterance-level emotion recognition. Though the
length information ||v|| is redundant given the vectors v, we
intend to provide this information explicitly to save learning ef-
fort of the network. To further capture temporal information, we
add a branch of gated recurrent unit (GRU) on the convolutional
layers. The two branches of GRU and capsules are combined
with heuristic weights (set at 0.6).

2) RENet: The residual error network (RENet) is designed
to encode residual error information into the emotion repre-
sentation vector. The residual error is defined as the difference
between acoustic feature sequence (i.e. spectrogram) of emotive
utterance y(e) = {y(e)

1 ,y
(e)
2 , . . .,y

(e)
Te
} and that of neutral utter-

ance y(n) = {y(n)
1 ,y

(n)
2 , . . .,y

(n)
Tn
}, corresponding to the same

lingusitic feature sequence (i.e. textual) x = {x1,x2, . . .,xN}.
In this way, the RENet is very desirable for extracting contrastive
information between neutral and emotive speech. However,
there is difficulty in finding an utterance pair with the same
textual content but different contrastive acoustic realizations in
the training dataset. Also, if the two utterances have different
durations, we will need to find their alignment before calculat-
ing the residual error based on the aligned feature sequences.
To circumvent these two difficulties, we first generate parallel
data using an externally trained seq2seq neutral TTS model.
However, it is challenging to obtain sufficient neutral data with
the same recording condition as the emotive data for training.
In this work, we use an average-emotion TTS model to generate
the “neutral” data. The model is optimized to generate emotive
utterances given only the text without any emotion specification.
Hence the model tends to generate an average of the emotions in
the emotive training data. This model generates every step based
on the attention alignment between the input linguistic features
x and the previous generated acoustic features ŷ(n)

{1:t−1},

ŷ
(n)
t = f

(
ŷ
(n)
{1:t−1},x, α

(
ŷ
(n)
{1:t−1},x

))
, (7)
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Fig. 9. Structure of the RENet-based extractor.

whereα(·) denotes the attention alignments and f(·) the seq2seq
structure. To make the generated neutral utterance aligned to
the emotive utterance, one option is to feed the emotive feature
sequence y(e) to the seq2seq model as

ŷ′
(n)

t = f
(
y
(e)
{1:t−1},x, α

(
y
(e)
{1:t−1},x

))
. (8)

Eq. (8) is also referred to as teacher-forcing generation in some
literature [63], [64]. In this way, we obtain two sequences y(e)

and ŷ′
(n)

that are aligned to each other. Another option is to
obtain the alignments from the emotive utterance y(e) and use
them during inference to obtain the average emotion utterances

ŷ′′
(n)

t = f
(
ŷ′′

(n)

{1:t−1},x, α
(
y
(e)
{1:t−1},x

))
. (9)

since the alignment is calculated from the emotive utterance,

therefore the generated average-emotion utterances ŷ′
(n)

and

ŷ′′
(n)

are aligned to y(e). With the aligned utterances, the
residual error r can then be calculated frame-by-frame as

rt = y
(e)
t − ŷ′

(n)

t , t = 1, 2, . . . , Te. (10)

The RENet, as shown in Fig. 9, is then used to encode
the residual error sequence r into a residual error embedding
(REE) e. The RENet consists of multiple dense layers and one
bi-directional GRU layer from bottom to top. The dense layers
are designed to transform the input residual error into the feature
space that is more appropriate for providing emotive information
for the synthesizer model. The GRU layer is used to capture
temporal information in the residual error sequence. To improve
the robustness against noise in the residual error sequence, the
outputs of the dense layers are dropped out with a certain rate
(e.g. 0.5), as applied similarly in [53]. The hidden state values
of the forward direction GRU (fw-GRU) at the last time step
and those of the backward GRU (bk-GRU) at the first time step
are concatenated to obtain the REE. The REE based on residual
error sequence calculated using teacher forcing in Eq. (8) and
that using emotive alignments in Eq. (9) will be used as the EA
and EAli descriptor, respectively.

As an illustration of how the learned REE control the syn-
thesized prosodic variations, we calculate Pearson correlation
coefficients between each dimension of the embeddings and the
mean F0 of all training samples. As shown in Fig. 10, the 23-rd

Fig. 10. Pearson correlation coefficients between each dimension of the style
embeddings and the mean F0 values of training data.

Fig. 11. Smoothed F0 trajectories of the manipulated embeddings.

dimension of the embedding has strong negative correlation
with the mean F0 values. To verify the controllability of the
embedding, we compare the F0 trajectories of the synthetic
speech when the embedding varies only in the 23-rd dimension.
We first extract an embedding vector, denoted as emb-0, from a
random reference sample in the training set. Then we add +0.2,
−0.2,−0.4 and−0.6 to the 23-rd dimension of emb-0 to obtain
four new embeddings, denoted as emb+ 0.2, emb-0.2, emb-0.4
and emb-0.6. We then use these embeddings to generate audio
samples. The smoothed F0 trajectories (linear interpolation in
unvoiced frames) of synthetic speeches are shown in Fig. 11.
We can observe that the F0 trajectories increase as the value
of the 23-rd dimension decreases.1 To control the F0 trajectory
heights described by REE, we can tune the value in the 23-rd
dimension, which effectuates the synthesis of the corresponding
trajectories.

D. Emotive Speech Synthesis

Having extracted emotive descriptors, including the cate-
gorical descriptors (i.e. EC, EP and EL) from SER, and the
automatically derived descriptor (i.e. EA and EAli) from RENet,
we follow through with emotive speech synthesis.

By setting the input exemplar to be the same as the target
utterance, we train the system to synthesize output speech with
the emotion(s) specified by the exemplar. In this way, the input
emotive descriptor and the output speech are consistent in the
emotion and the strategy of expression. The training process is

1Samples are available in “http://www1.se.cuhk.edu.hk/∼wuxx/TASLP/
ExemplarTTS.html ”
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to optimize the target seq2seq TTS model using the loss function

L(e) =
1

Te

Te∑
t=1

‖ yt − ŷ
(e)
t ‖22, (11)

wherey and ŷ(e) are the ground-truth emotive acoustic sequence
and the corresponding generated sequence. In EC-TTS, EP-TTS
and EL-TTS, the CapNet and the target model are trained sep-
arately on two different corpora. The CapNet is first trained on
SER corpus, and then applied to the utterance exemplar to extract
the descriptors. The target model is then optimized to generate
emotive speech based on the extracted decriptors using another
TTS corpus. In EA-TTS and EAli-TTS, the RENet is jointly
trained with the neutral TTS model and the target TTS model
using the same TTS corpus, in order to improve the alignment
accuracy. The joint loss function is

L = L(n) + L(e), (12)

where L(n) is the loss function term corresponding to the
average-emotion TTS model:

L(n) =
1

Tn

Tn∑
t=1

‖ yt − ŷ
(n)
t ‖22 . (13)

The average-emotion model only receives textual input without
additional emotive information. Hence, it tends to generate
acoustic features with the average emotion [65].

IV. EXPERIMENTS

A. Corpus

We train the SER models using the interactive emotive dyadic
motion capture (IEMOCAP) database [66], which consists of
five sessions, with two speakers in each session. We adopt five-
fold cross validation as [67] — 8 speakers from four sessions
in the corpus are used as training data. One speaker from the
remaining session is used as validation data, and the other one
as test data. Only the improvised data is used. The spectrograms
are extracted with 40-ms Hanning window, 10-ms shift and DFT
of length 1600 (for 10 Hz grid resolution). In this work, we use
the four emotion categories of Happy, Angry, Sad and Neutral.

The proposed E-TTS systems are evaluated on the audiobook
corpus from Blizzard Challenge 2016, which is recorded by a
native female speaker [68]. The speaker tries to utter in different
styles in the recording, including emotions, mimicked role char-
acters’ voice. There are 50 books in the audiobook data. We use
the book “A Midsummer Night’s Dream” as testing data (around
0.35 hours), and the other 49 books as training data (around 4.79
hours). We extract the 1025-dimension Logarithmic magnitude
linear-scale spectrograms and 80-band Mel-scale spectrograms
with 50-ms Hanning window, 12.5-ms shift, and 2048-point
Fourier transform [45].

B. Evaluation Criteria

1) SER Evaluation: We use two common evaluation metrics
for performance comparison across various systems:

� Weighted Accuracy (WA) – the accuracy of all samples in
the test data.

� Unweighted Accuracy (UA) – the average of class accura-
cies in the test set.

This reflects the accuracy of the extracted categorical descrip-
tor:

WA =

∑K
i=1 Pi∑K
i=1 Ui

, (14)

UA =

∑K
i=1 Pi/Ui

K
, (15)

where Pi is the number of utterances with correct prediction of
emotion i, Ui is the number of utterances with actual emotion i,
and K is the number of emotions tested.

2) E-TTS Evaluation: For the objective evaluation of E-TTS
systems, we calculate the mean squared error (MSE) between
the teacher-forced generated Mel-spectrograms with the actual
Mel-spectrograms on the test set.

For subjective evaluation, we use mean opinion scores (MOS)
for evaluating speech quality and the emotive expressions of the
above systems. 16 utterances are randomly selected from the
testing data and synthesized by the seven systems respectively,
thus we have 112 utterances to be evaluated. For the six systems
requiring exemplar for emotion specification, another utterance
is randomly selected from the testing data as the exemplar. We
invite 19 participants without listening impairment to participate
in the tests.2 To get MOS on speech quality, each subject listens
to each utterance and scores using a 5-point Likert scale on
speech quality (5: excellent, 4: good, 3: fair, 2: poor, 1: bad).
For evaluation on emotion similarity, the subjects are required
to listen to a set of seven utterances generated respectively by the
seven systems, in addition to the utterance exemplar, and then
provide a 5-point score for the emotion similarity between the
generated speech and the utterance exemplar (5: very similar, 4:
similar, 3: somewhat similar, 2: different, 1: very different). The
order of the seven generated utterances is randomized.

C. Network Configurations

This section describes the network configurations of the ex-
perimental systems, including two baseline systems and the five
proposed E-TTS systems.

1) Baseline Systems: The baseline model Tacotron is a
seq2seq-based system that consists of a CBHG encoder, an RNN
decoder, an attention module, a Pre-net module and a Post-net
component [53]–[55], as shown in Fig. 12. Tacotron does not
require emotion specification and generates speech with the
average emotion.

The encoder consists of three parts: the embedding lookup
layer, the dense layers and the CBHG module. The embedding
lookup layer is used to transform the input character sequence of
one-hot vectors into an embedding sequence of continuous vec-
tors. The embeddings are retrieved from the embedding lookup
table by multiplying the table with the corresponding one-hot

2Subjective evaluations conducted on Amazon Mechanical Turk can be found
in our previous work in [21]
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Fig. 12. System architecture based on the seq2seq structure Tacotron and exemplary emotion descriptors, which can be obtained from CapNet or RENet.

vector. The table is trained together with the whole model using
backpropagation. Two dense layers with 256 units activated by
ReLU activation, and dropped out with the rate of 0.5, are used
to further transform the embeddings into hidden representa-
tions. The CBHG module consists of a bank of 1-dimension
convolutional filters, followed by highway networks [69] and a
bidirectional GRU layer. The filter bank contains 16 sets of filters
with various widths from 1 to 16. Different widths of filters are
used to capture different lengths of context. The convolution
outputs are stacked together and further max-pooled along time
to increase local invariance. The pooling window stride is set to 1
to preserve the original time resolution. The pooling outputs are
fed to fixed-width 1-dimension convolutional layers and added
with the original input sequence using residual connections.
The outputs from the residual connections are fed to a 4-layer
highway network to extract high-level features. A bidirectional
GRU layer with 128 cells per direction is stacked upon the
highway network to capture the temporal information.

The decoder is composed of two unidirectional GRU layers
with 256 cells. The outputs of the GRU layers are added with
the original inputs via residual connections [70]. The input to
the decoder is the attention-based weighted summation of the
encoder outputs, i.e. the bidirectional GRU layer outputs. The
attention weights are calculated based on the encoder outputs
and the Pre-net outputs. The Pre-net, which is used to transform
the output Mel-scale spectrogram into hidden representation
sequence for attention calculation, consists of two dense layers.
The two dense layers with 256 and 128 units are activated by
ReLU activation, and dropped out with the rate of 0.5.

The Post-net is utilized to further improve the Mel-
spectrogram output from the decoder. The waveform is gen-
erated with the obtained Mel-spectrogram using the parallel

WaveNet [71], [72]. The Post-net is another CBHG module with
8 sets of filters. The filter widths are from 1 to 8.

Another baseline system is the incorporation of global style
token (GST) into Tacotron, denoted as GST-Tacotron [42]. The
GSTs are a set of embeddings that are combined using attention
mechanisms to generate emotive embeddings and jointly trained
with the Tacotron. The GSTs are randomly initialized before
training. The utterance exemplar is fed to a reference encoder
that consists of a stack of six 2-dimensional convolutional layers
and a GRU layer. The last hidden state of the GRU layer is
projected to the space of GSTs with an content-based tanh
attention module. The projected embedding, i.e. the weighted
combination of GSTs with weights generated from the attention
module, is used the emotive descriptor. We use a 4-head attention
as [42].

2) EC-TTS, EP-TTS and EL-TTS: In the CapNet-based SER
model, 8 separated convolutional layers with kernel size of 5×5
and channel number of 8 are applied to the CNN component
consisting of 4 convolutional layers [62]. Then, for each position
in the outputs of the 8 convoutional layers, the units along each
channel direction are combined together to obtain capsules with
size of 8 (i.e. the channel number). These capsules are then
routed to the consequent window-level capsule layer with 8
capsules of size 8 in each window. An utterance-level routing
is applied to the window output vectors to produce 4 utterance-
level capsules with size of 16. The window used to slice the input
matrix is set at size 40 input steps with shifts of 20 steps. The
iteration number of the routing algorithm is set to 3. The outputs
of the GRU layers and those of the capsule components are fed
to separate sets of dense layers and softmax layer.

The categorical emotion descriptors extracted from the utter-
ance exemplar are integrated to the seq2seq model that has the
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TABLE I
WA AND UA OF SPEECH EMOTION RECOGNITION ACROSS VARIOUS SYSTEMS

TABLE II
PARAMETER NUMBERS OF CAPNETS COMPARED TO THE BASELINE OF

CNN_GRU

same structure as the Tacotron system. The emotion descriptors
of EC, EP and EL are repeated and added to each step of the
encoder outputs as [42], [73], called “broadcast,” as in Fig. 12.

3) EA-TTS and EAli-TTS: The residual error encoder is im-
plemented as two dense layers with 128 units per layer, activated
by ReLU, dropped out with rate of 0.5, and one bi-directional
GRU layer with 32 memory blocks in each direction. This
generates the 64 dimensional EA and EAli descriptor, with 32
dimensions for each direction of the GRU layer. The seq2seq
model has the same configuration as the Tacotron baseline.

D. Results

1) CapNet-Based SER Performance: The CapNet-based
SER model achieves performance comparable to state-of-the-art
systems, as shown in Table I. This validates the effectiveness of
capsule structure in capturing the spatial features in spectro-
grams. Table II shows the performances and parameter numbers
of the baseline system of CNN_GRU and two possible CapNet
structures: CNN_Cap and CNN_GRU-Cap. As shown in Fig. 8,
CNN_GRU-Cap combines the two branches of GRU and Cap
on top of the convolutional and pooling layers. The CNN_Cap
outperforms the CNN_GRU, but requires less parameters. This
demonstrates the effectiveness of the capsule structure. The
combination of GRU and capsule incorporates the advantages of
both structures and achieves better results than each individual.

2) Exemplary Feature Comparison: In this section, we com-
pare two different types of exemplary features, the spectrogram
and the prosodic features of pitch, energy and duration. Based
on the GST-Tacotron system, we build four systems using the
following features as reference: (i) spectrogram (GST-Tacotron);
(ii) pitch contour (P-GST-Tacotron); (iii) pitch and energy con-
tours (PE-GST-Tacotron); and (iv) pitch contour, energy con-
tour and word duration sequence (PED-GST-Tacotron).3 The
architectures of (ii)–(iv) are the same as (i), except that separate
reference encoders are applied to pitch, energy and duration
features respectively and the encoder outputs are concatenated
to obtain the utterance-level embedding. The convolutional lay-
ers in the reference encoders of pitch, energy and duration
are changed to 1 dimension. We use the above four systems,

3The duration sequence is obtained using Montreal Forced Aligner. https:
//github.com/MontrealCorpusTools/Montreal-Forced-Aligner

TABLE III
PEARSON CORRELATION COEFFICIENTS BETWEEN MEAN ENERGY OF THE

EXEMPLARY UTTERANCES AND THE SYNTHESIZED UTTERANCES THAT ARE

SYNTHESIZED BY GST-TACOTRON SYSTEMS USING DIFFERENT EXEMPLARY

FEATURES (RANGES INDICATE 95% CONFIDENTIAL INTERVALS)

TABLE IV
OBJECTIVE AND SUBJECTIVE EVALUATION RESULTS OF VARIOUS SYSTEMS

(RANGES INDICATE 95% CONFIDENTIAL INTERVALS)

GST-Tacotron, P-GST-Tacotron, PE-GST-Tacotron and PED-
GST-Tacotron, to synthesize speech with the same text content,
while conditioned on different utterance exemplars. The Pearson
correlation coefficients between the mean energy values of the
utterance exemplars and that of the generated utterances are
calculated and shown in Table III, where the p-values reflect
the test for non-correlation. We also conduct subjective eval-
uation to compare the emotion similarity performances of the
sytems using different exemplary features. As can be observed
from Table III, feeding energy information to GST-Tacotron can
significantly improve the correlation between the synthesized
utterances and the exemplary utterances, in both the explicit
way of energy contour and the implicit way of spectrogram.
However, the system using spectrogram demonstrates advan-
tages in emotion similarity of the synthesized speech. Recent
work has shown possible ways to improve the emotion similarity
performance with these explicit prosodic features, for example,
via variational auto-encoder (VAE) [57] or secondary attention
mechanism [76]. In the following, we will focus on the systems
using spectrograms as exemplary features.

3) Objective Evaluation on E-TTS: For the E-TTS systems,
we first investigate the objective evaluation based on the criteria
of teacher-forcing output Mel-spectrogram MSE. Results can
be found in Table IV. All the E-TTS systems, except EAli-TTS,
outperform the baseline Tacotron, which demonstrates that the
utterance exemplars help the model generate spectrograms that
are closer to the target spectrograms. The EAli-TTS generates
poor quality speech, and the corresponding MSE value is much
larger than Tacotron and the other systems, due to the mismatch
between training and inference. The EP-TTS and EL-TTS sys-
tem provide smaller MSE than the EC-TTS system. A possible
reason is that the EP and EL carries richer information (i.e. the
SER model’s confidence of recognizing the four emotions) than
the EC that only provides the identity of the most confident
emotion. The EA-TTS system achieves the best performance
compared to the other two systems with SER-based exemplar
specifications, which reflects the superiority of the neural latent
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Fig. 13. Subjective evaluation of various systems.

emotion specification. It should be noted that the MSE values
mainly reflect relative performance across systems, which is
more relevant for model tuning. The final performance evalu-
ation needs to rely on the further subjective evaluations.

4) Subjective Evaluation on Speech Quality: Results of the
MOS test on speech quality are shown in Table IV and Fig. 13.
All the E-TTS systems, except EAli-TTS, outperform the aver-
age emotion system Tacotron (p < 0.01). One possible reason
is that the training data carries distributions of various emo-
tions. Without the specification from the exemplar, the Tacotron
system tends to predict the averaged distribution. While the
E-TTS systems utilize the emotion information provided by the
utterance exemplar and fit the network weights for each dis-
tribution more accurately. The EC-TTS, EP-TTS and EA-TTS
systems achieve slightly better (not significantly) or comparable
perforamce with the baseline GST-Tacotron system, and the
EL-TTS system significantly outperforms the GST-Tacotron
system (p < 0.01).

5) Subjective Evaluation on Emotion Similarity: Table IV
shows the results for MOS on emotion similarity. All E-TTS
systems, except EAli-TTS, outperform the baseline (p < 0.01).
which demonstrates the effectiveness of exemplar-based emo-
tion specification for generating emotive speech. The EA-TTS
system achieves the best performance, which demonstrates the
advantage of using the neural latent specification to explicitly
model the residual difference. An interesting observation is that
the EC, EL and EP specifications using the SER model led to
better speech quality but worse emotion similarity, compared
with the EA specification. A possible reason is that the training
corpus for SER is different from that of E-TTS. This change
in corpora tends to lead to degradation in emotion recognition
precision, resulting in inferior emotion similarity. Also, the EA
specification is jointly optimized with the target E-TTS system
towards the goal of sufficiently capturing the output acoustic
variations. The effect of better variation capturing can be ob-
served from the lower MSE error in Table IV. A case study is
presented in the following section.

E. Pitch Contour Analysis

We conduct further case study on synthetic pitch contours to
investigate the ability of the proposed E-TTS systems to gener-
ate speech with various acoustic realizations (pitch variations)
specified by the utterance exemplars.

Fig. 14. (a) An exemplar with the text content of “And high for the girl”. The
pitch contour is high and has two peaks at around 0.7 s and 1.2 s. The recognized
emotion code is Neutral and detailed probabilities of the four classes Neutral,
Angry, Happy and Sad are (0.57, 0.06, 0.37, 0). (b) The speech synthesized by
Tacotron, EC-TTS, EP-TTS and EA-TTS using the exemplar in (a). EA-TTS can
mimic the emotion in the exemplar better than the SER-based systems EC-TTS
and EP-TTS. The pitch contour generated by EA-TTS is higher and contains
two peaks.

The first question is why the SER-based systems, i.e EC-TTS
and EP-TTS is inferior to EA-TTS in emotion similarity, as
shown in the above subjective evaluations. Fig. 14(a) presents
an exemplar with the text content of “And high for the girl.” The
pitch contour is high with two peaks at around 0.7 and 1.2 s.
Feeding this exemplar to the SER system obtains the emotion
class of Neutral, and the predicted probablities are (0.57, 0.06,
0.37, 0) for the four classes of Neutral, Angry, Happy and Sad.
Fig. 14(b) shows the utterances synthesized by Tacotron, EC-
TTS, EP-TTS and EA-TTS using the exemplar in Fig. 14(a). As
can be found that since the recognized emotion class is Neutral,
EC-TTS systhesize an utterance that is similar to the average-
emotion utterance generated by Tacotron, but not similar to the
exemplar. The probability values provide EP-TTS more emotive
information, and the synthesized pitch contour is more similar to
the exemplar—the pitch contour is higher and contains a peak.
The EA-TTS system generates a even more similar pitch contour
that is higher than the other systems and contains two peaks. This
shows the importance of feeding enough emotive information to
the E-TTS systems.

We analyze the pitch contours of the speech synthesized by
EA-TTS to examine the similarity between the pitch range of the
synthesized utteances and that of the exemplary utterances. We
use two utterances from the audio corpus that have different
pitch ranges for emotion specification, as shown in Fig. 15
and 16. Exemplar A in Fig. 15 has a lower pitch contour, mostly
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Fig. 15. Pitch contour of the exemplar A with textual content of “Soon, he was
sound asleep.”

Fig. 16. Pitch contour of the exemplar B with textual content of “Oh Juliet,
my Juliet!.”

Fig. 17. Pitch contours of the two speech utterances synthesized by the
exemplars A and B, respectively. The two utterances have the same textual
content of “A few hours later, three weddings had taken place.”

between 117 Hz and 209 Hz, while exemplar B in Fig. 16 has a
higher pitch contour between 223 Hz and 398 Hz. We generate
three utterances with the same textual content for comparison,
as shown in Fig. 17. The EA-TTS system is used to generate two
speech utterances with the two emotion specifications from the
two utterance exemplars. A third speech utterance with average
emotion is generated by the Tacotron system. As shown in
Fig. 17, the utterance synthesized with exemplar A also has a
lower pitch contour, between 132 Hz and 236 Hz, below the
neutral contour. The utterance synthesized with exemplar B has
a higher pitch contour, between 195 Hz and 387 Hz, above the
neutral one. This demonstrates the ability of the EA-TTS to
generate similar pitch contour as specified by the exemplar, in
terms of pitch ranges.

V. CONCLUSION

In this paper, we present a novel approach that advocates the
use of exemplar-based emotive speech synthesis. The approach
aims to bypass the step of emotion specification using categorical
codes or dimensional values which present difficulties not only
in annotation, but also in enforcing annotation consistency in
face of human subjectivity. The proposed approach circumvents
these difficulties by advocating the use of an utterance exemplar
that carries the target emotive information.

This paper has addressed four research questions related to
the exemplar-based emotive speech synthesis approach, relat-
ing to feature representation of the utterance exemplar, emo-
tion descriptor, mapping between the features and the emotion

descriptors, and the use of the descriptors in emotive speech
synthesis. We adopt conventional categorical codes as emotive
descriptors of the utterance exemplar through the use of a
speech emotion recognizer (SER). Hence the descriptor can
take the form of a one-hot vector with a single recognized
emotion (denoted as EC), a set of confidence values across all
emotion categories (denoted as EP), or a set of logit values of
all emotion categories before the softmax layers in the SER
(denoted as EL). We are mindful that conventional categori-
cal codes as emotive descriptors may fall short in describing
complex emotions (with a mixture of categories) and the highly
varied acoustic realizations. Hence, we propose to use a neural
latent representation that can be automatically derived from the
utterance exemplar as the emotion descriptor (denoted as EA).
To map the feature representation (i.e. the spectrogram) into
the emotion descriptors, we use two kinds of neural networks,
namely capsule networks (CapNets) and residual error networks
(RENets). CapNets can capture and preserve spatial information
in the time-frequency analyses in the spectrogram. ReNets can
capture contrastive information between neutral and emotive
acoustic realizations based on the same linguistic (i.e. textual)
input. Finally the descriptor values are used to augment textual
input for emotive speech synthesis using a sequence-to-sequence
architecture.

All four types of emotion descriptors (EC, EP, EL and EA),
derived from the utterance exemplar, proved to be effective for
emotive speech synthesis in generating outputs with superior
speech quality and emotion similarity (with the target reference)
compared with a baseline, average emotion TTS system based
on Tacotron. Analysis of synthesized pitch contours also val-
idates the capability of generating similar acoustic variations
as specified by the utterance exemplars. The neural descriptor
derived using RENets achieves better emotion similarity than
those derived with CapNets, by leveraging joint training of the
RENets and the seq2seq architecture for synthesis. Future work
will investigate speaker independence in the use of utterance
exemplars for this novel emotive speech synthesis framework.
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